Let (\Omega, \mathcal{F}, \mathbb{P}) be a probability space and X be a random variable on \Omega. The law (or distribution) of X is the (Borel) probability measure on the real line defined by
\mathbb{P}_X(A) = \mathbb{P}(X \in A)
for every Borel A \subseteq \mathbb{R}.
Conversely, suppose we are given a probability measure \mu on \mathbb{R}. We can build a random variable so that its law is precisely \mu. Take \Omega = [0, 1], \mathcal{F} be the Borel \sigma-algebra and \mathbb{P} be the Lebesgue measure. For each \omega \in \Omega, let
X(\omega) = \inf \{t \in \mathbb{R}: \mu((-\infty, t]) \geq \omega\}.
This defines a random variable X on the probability space (\Omega, \mathcal{F}, \mathbb{P}).
Claim: The law of X is \mu.
Proof: Fix any real number a. We need to show that \mathbb{P}(X \leq a) = \mu((-\infty, a]). Now for every \omega \in \Omega,
\begin{aligned}
&X(\omega) \leq a \\
&\Leftrightarrow \inf \{t \in \mathbb{R}: \mu((-\infty, t]) \geq \omega\} \leq a \\
&\Leftrightarrow \forall n \in \mathbb{N} \inf \{t \in \mathbb{R}: \mu((-\infty, t]) \geq \omega\} < a + \frac{1}{n} \\
&\Leftrightarrow \forall n \in \mathbb{N} \mu((-\infty, a + \frac{1}{n}]) \geq \omega \\
&\Leftrightarrow \mu((-\infty, a]) \geq \omega. \\
\end{aligned}
Hence we have that \mathbb{P}(X \leq a) = \mathbb{P}(\{\omega \in \Omega: \mu((-\infty, a]) \geq \omega\}) = \mathbb{P}([0, \mu((-\infty, a])]) = \mu((-\infty, a]). Q.E.D.
Reference:
Bass - Probabilistic Techniques in Analysis
No comments:
Post a Comment