We recall the definition of the semidirect product of two groups. Suppose N and H are two groups and H acts on N by \vphi, i.e. we have a homomorphism \func{\vphi}{H}{\mathrm{Aut}(N)}, h \mapsto \vphi_h. The semidirect product N \rtimes_\vphi H is defined by endowing the set N \times H the multiplication (n_1, h_1) \cdot (n_2, h_2) = (n_1 \vphi_{h_1}(n_2), h_1 h_2). Identifying N with N \times \{1\} and H with \{1\} \times H, N and H are subgroups of N \rtimes_\vphi H with N normal.
Theorem (Splitting Lemma). Let G be a group, H be a subgroup of G and N be a normal subgroup of G. Then G is isomorphic to a semidirect product N \rtimes_\vphi H if and only if
(i) there exist a short exact sequence 1 \rightarrow N \overset{\iota}\rightarrow G \overset{\pi}{\rightarrow} H \rightarrow 1 and
(ii) a homomophism \func{\alpha}{H}{G} such that \pi \circ \alpha = \mathrm{id}_H.
Proof: (\Leftarrow) Suppose G = N \rtimes_\vphi H. To prove (i) let \iota be the inclusion map of N into G, which is a injective homomorphism. Define \func{\pi}{G}{H} by \pi((n, h)) = h. Clearly \pi is a surjective homomorphism and its kernel is N \times \{1\} \cong N. For (ii), define \func{\alpha}{H}{G} by \alpha(h) = (1, h). Then \alpha is a homomorphism with \pi(\alpha(h)) = \pi((1, h)) = h for all h \in H.
(\Rightarrow) Define a homomorphism \func{\vphi}{H}{\mathrm{Aut}(N)} by \vphi_h(n) = \iota^{-1}(\alpha(h)\iota(n)\alpha(h)^{-1}), note that since N \lhd G we have gng^{-1} \in N whenever g \in G and n \in N, so \vphi is well-defined. We claim that G \cong N \rtimes_\vphi H. Define \func{\Psi}{N \rtimes_\vphi H}{G} by \Psi((n, h)) = \iota(n)\alpha(h). It is a homomorphism since \begin{align*}\Psi((n_1, h_1)\cdot(n_2, h_2)) &= \iota(n_1)\alpha(h_1)\iota(n_2)\alpha(h_1)^{-1}\alpha(h_1 h_2) \\
&= \iota(n_1)\alpha(h_1)\iota(n_2)\alpha(h_2) \\
&= \Psi((n_1, h_1))\Psi((n_2, h_2)). \end{align*} Now define \func{\Phi}{G}{N \rtimes_\vphi H} by \Phi(g) = (\iota^{-1}(g (\alpha \circ \pi)(g^{-1})), \pi(g)). It is well-defined since \pi(g(\alpha \circ \pi)(g^{-1})) = \pi(g)(\pi \circ \alpha)(\pi(g)^{-1}) = \pi(g)\pi(g)^{-1} = 1 and thus g(\alpha \circ \pi)(g^{-1}) \in \ker(\pi) = \mathrm{im}(\iota). It is a homomorphism as
\begin{align*} \Phi(g_1)\Phi(g_2) &= (\iota^{-1}(g_1 (\alpha \circ \pi)(g_1^{-1})), \pi(g_1)) \cdot (\iota^{-1}(g_2 (\alpha \circ \pi)(g_2^{-1})), \pi(g_2)) \\
&= (\iota^{-1}(g_1 (\alpha \circ \pi)(g_1^{-1})) \vphi_{\pi(g_1)}(\iota^{-1}(g_2 (\alpha \circ \pi)(g_2^{-1}))), \pi(g_1)\pi(g_2)) \\
&= (\iota^{-1}(g_1 (\alpha \circ \pi)(g_1^{-1})) \iota^{-1}(\alpha(\pi(g_1))g_2(\alpha \circ \pi)(g_2^{-1})\alpha(\pi(g_1))^{-1}), \pi(g_1 g_2)) \\
&= (\iota^{-1}(g_1 g_2 (\alpha \circ \pi)(g_2^{-1} g_1^{-1})), \pi(g_1 g_2)) \\
&= \Phi(g_1 g_2).
\end{align*} Now \begin{align*}\Phi \circ \Psi(n, h) &= \Phi(\iota(n)\alpha(h)) = \Phi(\iota(n))\Phi(\alpha(h)) \\
&= (\iota^{-1}(\iota(n)(\alpha \circ \pi \circ \iota)(n^{-1})), (\pi \circ \iota)(n)) \cdot (\iota^{-1}(\alpha(h)(\alpha \circ \pi \circ \alpha)(h^{-1})), (\pi \circ \alpha)(h)) \\
&= (n, 1) \cdot (1, h) = (n, h)
\end{align*} and \begin{align*} \Psi \circ \Phi(g) &= \Psi((\iota^{-1}(g (\alpha \circ \pi)(g^{-1})), \pi(g))) \\
&= \iota(\iota^{-1}(g (\alpha \circ \pi)(g^{-1})))\alpha(\pi(g)) = g.
\end{align*} Hence \Phi and \Psi are inverse to each other and thus are isomorphisms.
No comments:
Post a Comment