Denote \Z_2 the field with 2 elements. A function f: \Z_2^n \rightarrow \Z_2 is said to be balanced if |f^{-1}(0)| = |f^{-1}(1)|.
Problem: Suppose f: \Z_2^n \rightarrow \Z_2 is either constant or balanced. Determine whether f is constant or balanced.
Given: A quantum oracle for f, represented by U_f: \ket{\mathbf{x}}\ket{y} \mapsto \ket{\mathbf{x}}\ket{y \oplus f(\mathbf{x})}.
Deutsch-Jozsa algorithm:
1. Prepare an (n + 1)-qubit initial state \ket{\psi_1} = \ket{\mathbf{0}}\left(\frac{\ket{0} - \ket{1}}{\sqrt{2}}\right).
2. Apply \otimes_{k = 1}^n H to the first n-qubit. Get \ket{\psi_2} = \frac{1}{\sqrt{2^n}} \sum_{k = 0}^{2^n - 1} \ket{\mathbf{k}} \left(\frac{\ket{0} - \ket{1}}{\sqrt{2}}\right).
3. Apply U_f to obtain \ket{\psi_3} = \frac{1}{\sqrt{2^n}} \sum_{k = 0}^{2^n - 1} (-1)^{f(\mathbf{k})}\ket{\mathbf{k}} \left(\frac{\ket{0} - \ket{1}}{\sqrt{2}}\right).
4. Apply again \otimes_{k = 1}^n H to the first n-qubit. Get \ket{\psi_4} = \frac{1}{2^n}\sum_{k = 0}^{2^n - 1} (-1)^{f(\mathbf{k})}\sum_{s = 0}^{2^n - 1} (-1)^{\mathbf{k} \cdot \mathbf{s}}\ket{s}\left( \frac{\ket{0} - \ket{1}}{\sqrt{2}} \right).
5. If f is constant, then \ket{\psi_4} = \ket{\mathbf{0}}\frac{\ket{0} - \ket{1}}{\sqrt{2}} by \sum_{s = 0}^{2^n - 1} (-1)^{\mathbf{k} \cdot \mathbf{s}} = 0 if k \neq 0 and 2^n if k = 0, so on measuring first n-qubit we get \ket{\mathbf{0}} with probability one. If f is balanced, then write \ket{\psi_4} = \ket{\psi}\frac{\ket{0} - \ket{1}}{\sqrt{2}}, we have \braket{\mathbf{0}}{\psi} = \frac{1}{2^n}\sum_{k = 0}^{2^n - 1} (-1)^{f(\mathbf{k})}\sum_{s = 0}^{2^n - 1} (-1)^{\mathbf{k} \cdot \mathbf{s}} \braket{\mathbf{0}}{\mathbf{s}} = \sum_{k = 0}^{2^n - 1} (-1)^{f(\mathbf{k})} = 0 and the probability of getting \ket{\mathbf{0}} on measuring first n-qubit is zero. Therefore, we measure the first n-qubit. If the result is \ket{\mathbf{0}}, then f is constant, otherwise f is balanced.
No comments:
Post a Comment