$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
NOT (Pauli X): $\ket{x} \mapsto \ket{1 \oplus x}$
$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
Pauli Y:
$Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$
Pauli Z:
$Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
Hadamard:
$H = \frac{1}{\sqrt{2}}\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$
CNOT: $\ket{x} \ket{y} \mapsto \ket{x} \ket{x \oplus y}$
$C = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{pmatrix}$
Phase shift:
$R_\theta = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{pmatrix}$
(To be continued)
$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
Pauli Y:
$Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$
Pauli Z:
$Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
Hadamard:
$H = \frac{1}{\sqrt{2}}\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$
CNOT: $\ket{x} \ket{y} \mapsto \ket{x} \ket{x \oplus y}$
$C = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{pmatrix}$
Phase shift:
$R_\theta = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{pmatrix}$
(To be continued)
No comments:
Post a Comment