I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
NOT (Pauli X): \ket{x} \mapsto \ket{1 \oplus x}
X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}
Pauli Y:
Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}
Pauli Z:
Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}
Hadamard:
H = \frac{1}{\sqrt{2}}\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}
CNOT: \ket{x} \ket{y} \mapsto \ket{x} \ket{x \oplus y}
C = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{pmatrix}
Phase shift:
R_\theta = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{pmatrix}
(To be continued)
X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}
Pauli Y:
Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}
Pauli Z:
Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}
Hadamard:
H = \frac{1}{\sqrt{2}}\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}
CNOT: \ket{x} \ket{y} \mapsto \ket{x} \ket{x \oplus y}
C = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{pmatrix}
Phase shift:
R_\theta = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{pmatrix}
(To be continued)
No comments:
Post a Comment